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Abstract

This paper uses the panel data of 245 cities in China from 2005 to 2020 to build an ambient air 
pollution index to measure ambient air quality. Taking China’s national smart city pilot as a quasi-
experiment, the impact of smart city construction on urban ambient air quality and its impact path 
is tested by using the multi-period double difference method. The research results show that the 
construction of smart cities has significantly improved the urban ambient air quality, and with the 
improvement of the level of smart city construction, the degree of improvement in urban ambient air 
quality shows a positive fluctuation trend. The mechanism test results show that the construction of 
smart cities improves urban ambient air quality by enhancing the level of technological innovation and 
marketization in the city. Heterogeneity testing shows that the ambient air quality improvement effects 
of smart city construction vary depending on the size of the city’s population and the geographical 
location of the city. Furthermore, the moderating effect test shows that financial autonomy and industrial 
structure upgrading have a positive moderating effect on the improvement of ambient air quality in 
smart cities, while local government environmental regulation intensity has a reverse moderating effect.
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Introduction

Since the report of the 18th National Congress of the 
Chinese Communist Party proposed “building a new 
type of urbanization”, China’s urbanization rate has 
steadily increased. According to the statistics of the 
Bureau of Statistics of China, as of the end of 2021, the 

number of cities in China has reached 691, including 297 
cities at the prefecture level and above. The urbanization 
rate in China has increased from 57.33% in 2015 to 
65.22% in 2022, an increase of 13.76 percentage points. 
The income level of urban residents has also steadily 
increased, with per capita disposable income increasing 
from 33616 yuan in 2015 to 49283 yuan in 2022. 
However, as the process of urbanization progressed, the 
rapid population gathering in cities, has brought many 
problems to cities, including industrial chemical fuel 
combustion, traffic congestion, water pollution, and 
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waste pollution, leading to negative impacts on urban 
ambient air quality (Mahrukh et al., 2023; Balogun et 
al., 2021; Coelho et al., 2022; Huang et al., 2022; Yeo 
and Kim, 2022) [1-5]. According to the survey results 
of the China Environmental Bulletin 2021, 121 out of 
339 cities at the prefecture level and above in China 
exceeded the standard in air quality in 2021, accounting 
for 35.7% of the total number of cities. If the impact of 
dust and sand is not deducted, the proportion of cities 
with air quality exceeding the standard in 339 cities is 
43.1%. Air pollution not only causes huge economic 
losses (Li and Zhang, 2019) [6], but also causes great 
psychological and physical harm to people (Li et al., 
2019a) [7]. The infrastructure and management of 
traditional cities cannot meet people’s higher demands 
for the environment: smooth transportation, clean water 
sources, and clean air. Due to the traditional placement 
of air detection equipment in fixed enclosed areas in 
cities, only a few areas are sampled for air, making it 
impossible to conduct detailed air sampling at various 
blocks in the city. Therefore, it is not possible to 
accurately assess the density and source of pollutants in 
the entire city, as well as the degree of exposure of urban 
residents to air pollution (Mart í n-Baos et al., 2022; Mc-
Kercher et al., 2017; Palomeque-Mangut et al., 2022) 
[8-10]. With the improvement of the living standards of 
urban residents, their sensitivity to ambient air quality is 
gradually increasing, and urban ambient air quality has 
gradually become a key factor to consider when high-
level talent transfer occurs (Wu et al., 2022) [11]. Local 
governments are considering which model of urban 
development is more conducive to forming “livable, 
resilient, and smart” cities, to attract talent and high-end 
industrial clusters.

With the rapid development of internet technology, 
sensors based on the internet of things (recorded as 
IoT) have begun to penetrate the infrastructure of 
traditional cities, and cities are naturally moving 
towards intelligence. A smart city is a digital city with 
modern technologies such as IoT, big data and cloud 
computing. Smart cities were first born in the United 
States. Countries around the world are vigorously 
developing smart cities to solve various problems caused 
by the expansion of traditional cities. As a developing 
country, China’s smart city construction started late, but 
its development speed is fast. In order to standardize 
and promote the healthy development of smart cities, 
the Ministry of Housing and Urban Rural Development 
of China issued a notice on December 5, 2012 on the 
implementation of the National Smart City Pilot Work, 
and issued two documents: the “Interim Management 
Measures for National Smart City Pilot Work” and the 
“National Smart City (District, Town) Pilot Indicator 
System (Trial)”, officially starting the smart city pilot 
work. On January 29, 2013, the Ministry of Housing 
and Urban Rural Development of China announced the 
first batch of 90 national smart city pilot lists, including 
37 prefecture level cities, 50 districts (counties), and 
3 towns. On August 5, 2013, the Ministry of Housing 

and Urban Rural Development of China announced  
the second batch of national smart city pilot lists, 
including 103 cities (including districts, counties, and 
towns). On April 7, 2014, the Ministry of Housing and 
Urban Rural Development of China announced the third 
batch of national smart city pilot lists, with 290 smart 
city pilot projects in China. In China’s “14th Five Year 
Plan” and the 2035 long-term goals, it is further clearly 
stated that “promoting the construction of new smart 
cities through classification and classification”. It can 
be seen that the construction of smart cities has risen 
to a national strategy and is constantly developing and 
improving. 

While the number of Chinese cities is growing 
rapidly, the problem of air pollution is also closely 
related. As an advanced model of urban development, 
can the construction of smart cities solve the problem 
of air pollution? The integration of IoT technology into 
environmental governance in smart cities will have 
a profound impact on air pollution prevention and 
control (Du et al., 2020) [12]. This may mean that the 
government can influence urban ambient air quality 
through the construction of smart cities, changing 
macro conditions such as technological environment. 
We attempt to explore whether the construction of smart 
cities in China has had a policy effect on improving 
urban ambient air quality. With the deepening of smart 
city construction, has its impact on ambient air quality 
deepened? What is the underlying mechanism of this 
impact? Are there differences in the environmental 
effects of smart city construction policies between 
cities? The national smart city pilot policy in China 
provides excellent conditions for exploring whether the 
construction of smart cities has the effect of improving 
environmental air quality.

Material and Methods

Literature Review and Theoretical Framework

The Direct Impact of Smart City Construction 
on Ambient Air Quality

The integration of smart city construction with 
ecological environment is reflected in emphasizing and 
implementing the promotion and application of smart 
technology in air pollution prevention and control. 
Specifically, intelligent transportation systems and 
smart logistics improve transportation efficiency, reduce 
energy consumption during the logistics process, and 
thus reduce carbon dioxide emissions through intelligent 
management of logistics systems. Smart grid power 
generation is mainly based on clean new energy, greatly 
improving the energy consumption structure, saving 
fossil energy consumption such as urban coal, and 
reducing various gas pollutant emissions (Du et al., 
2023; Faheem et al., 2019) [13, 14]. Smart water in smart 
cities achieves refined management of sewage treatment, 
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improves sewage treatment efficiency, and reduces 
exhaust emissions caused by sewage treatment.

The construction of smart cities empowers 
supervision. With the advancement of smart technology, 
local environmental protection departments have 
become more refined in their supervision, and their 
ability to timely identify and quickly handle pollution 
sources has greatly improved. Another major source of 
air pollution is the gas generated by the combustion of 
fossil fuels in industrial production and the discharge of 
wastewater from enterprises. The intelligent monitoring 
system helps accurately monitor the pollutants emitted 
by enterprises during production, prevent illegal 
emissions and storage of pollutants by enterprises from 
causing environmental air pollution, and achieve the 
solution of pollution problems at the source.

In the field of ambient air, the construction of smart 
cities can effectively solve the problem of ambient air 
pollution.

Naturally, the higher the overall level of intelligence 
in a city is, the higher the level of popularization of 
intelligence. Intelligent application scenarios will 
become the norm for urban operation, greatly improving 
the efficiency of urban operation. Therefore, do cities 
with high levels of smart city construction have better 
environmental air quality? Generally, the leading 
direction of smart city construction in the initial stage 
is the intelligent transformation and construction of 
traditional infrastructure, as well as the underlying 
technical reserves for the construction of intelligent 
service platforms (Guo et al., 2022) [15]. The very 
deep transformation from traditional infrastructure to 
intelligent infrastructure will have a very big impact 
on the air changes in urban environments in the early 
stages of smart city construction. In the mid-term phase 
of smart city construction, due to a lack of experience 
and similarity, as well as for profit purposes, smart 
construction projects tend to be high-end projects 
without considering specific conventional problems 
that need to be solved in urban operation, and their 
construction effectiveness may decrease (Qiu, 2023) 
[16]. With the standardization of smart construction 
and the accumulation of construction experience, the 
leading direction of smart city construction will change, 
and “people-oriented, green and livable” will become 
the core strategy. For example, the level of smart city 
construction in China shows a gradually increasing 
trend in regional distribution from west to central to east 
(Tang et al., 2020) [17], and the level of green smart city 
construction in China also shows similar distribution 
characteristics in regional distribution (Sun and Zeng, 
2021) [18]. Given this, we propose the first hypothesis:

H1: The construction of smart cities has a positive 
impact on urban ambient air quality, and with the 
improvement of the smart city construction level,  
its improvement effect on ambient air quality shows  
a fluctuating trend.

The Mediating Role of Technological 
Innovation

Technological progress is a key element in terms 
of ability for improving air quality. The construction 
of smart cities has accelerated technological progress. 
On the one hand, the concept of smart cities includes 
technological innovation (Kummitha and Crutzen, 2017; 
Praharaj et al., 2018) [19, 20]. The technical architecture 
of smart cities is a new generation of information 
technology based on the internet of things, big data, 
cloud computing, artificial intelligence, etc. The process 
of building a smart city is linked to the development and 
application of smart technologies. For example, stowage 
route optimization technology and logistics automation 
technology developed by smart logistics have played 
a huge role in improving transportation efficiency and 
reducing carbon emissions. In waste management, smart 
waste systems are used to monitor the filling level of 
garbage bins in real-time through IoT sensors. Second, 
smart city construction accelerates technological 
innovation by promoting the digital transformation of 
government management and the digital transformation 
of enterprise production (Yuan and Zhu, 2021) [21]. 
Due to the use of intelligent monitoring systems 
by government departments to accurately and 
comprehensively monitor the pollution emissions of 
enterprises, preventing and controlling illegal storage 
and emission of waste gases by enterprises were 
achieved. Accurate environmental monitoring forces 
enterprises to develop green technologies and pollution 
control technologies at the production end, improve 
production efficiency and reduce pollution emissions, 
thus helping improve ambient air quality. Technological 
innovation improves urban operational efficiency and 
optimizes urban resource allocation, which helping 
reduce environmental pollution (Shi et al., 2018) 
[22]. Finally, in the process of building a smart city, 
informatization and digital technology have developed 
rapidly, and digital technology has gradually penetrated 
into traditional industries, promoting the innovation of 
production and management of traditional industries. 
The digital transformation of traditional industries is 
conducive to low-carbon and other green technology 
innovation of traditional industries (Jian et al., 2023) 
[23]. Given this, the following second hypothesis is 
proposed:

H2: Smart city construction improves urban 
environmental air quality by promoting technological 
innovation.

The Mediating Role of Marketization Level

The construction of smart cities can generate  
a huge market and expand the scale of the high-tech 
information market, thus stimulating market vitality 
and optimizing market structure. On the one hand, 
the construction of smart cities requires huge financial 
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support. Due to the limitations of fiscal decentralization 
in China, relying solely on government leadership in 
smart city construction will be an impossible task. 
Smart city construction requires cooperation between 
public–private partnerships (Zhang et al., 2018) [24].  
The expansion of this government enterprise cooperation 
model helps to reduce government intervention  
in the market and improve market competition for 
enterprises, hence stimulating market vitality and 
helping improve the level of marketization. On the  
other hand, the construction of smart cities spawned  
a new generation of information technology 
infrastructure industries related to energy conservation, 
environmental protection, and environmental 
monitoring. The market has a very high demand for 
sensors, chips, smart equipment, and cloud platform 
facilities (Cui and Chen, 2019) [25]. The improvement 
of the marketization level will help resources flow 
towards green technologies such as new environmental 
monitoring technologies, pollution control technologies, 
and new energy technologies, all of which will 
contribute to the improvement of environmental 
air quality. The construction of smart cities has 
accelerated the penetration of smart technology into 
traditional industries, promoting the application of new 
energy, energy conservation and emission reduction  
technologies in traditional industries. The popularization 
of smart technology has stimulated market vitality, 
expanded the market scale of the tertiary sector of  
the economy, and thus reduced urban ambient air 
pollution. Given this, the following third hypothesis is 
proposed:

H3: Smart city construction improves urban 
environmental air quality by improving the marketization 
level.

Experimental

Samples and Data

The national smart city pilot cities in China are 
divided into three batches, namely 2012, 2013, and 2014. 
Some pilot cities only include a certain county within 
this city, and these cities are removed from the sample. 
The final sample cities are 245, including 100 pilot cities 
and 145 non pilot cities. The sample interval is from 

2005 to 2020. The sample data come from the “China 
Urban Statistical Yearbook” over the years, statistical 
yearbooks of various provinces and cities, China Energy 
Statistical Yearbook, and Wind database.

Measurement of Variables

Explained variable: The air quality of urban 
surroundings is mainly affected by the emissions of 
industrial waste (exhaust gas, wastewater, smoke and 
dust, etc) and carbon dioxide emissions (Salman and 
Hasar, 2023) [26]. Therefore, we consider the use of 
the air pollution index (recorded as UAPI) to measure 
ambient air quality. The air pollution index includes: 
per capita industrial wastewater emissions, per capita 
industrial sulfur oxide emissions, per capita industrial 
smoke emissions, per capita carbon emissions and 
average annual concentration of PM2.5. Among them, 
the per capita sulfur oxide is represented by the ratio of 
annual industrial sulfur oxide emissions to permanent 
population in each city, and the per capita industrial 
smoke and dust emissions are represented by the ratio 
of annual industrial smoke and dust emissions to 
permanent population in each city. The per capita carbon 
is represented by the ratio of urban carbon emissions 
to permanent population. Based on the characteristics 
of population mobility in China and the availability of 
data, the urban population data used in this paper refers 
to urban permanent population data. The permanent 
population in China refers to the population who actually 
frequently reside in a certain area for a certain period 
of time (referring to more than half a year). The data 
on urban permanent population comes from the China 
Urban Statistical Yearbook. The industrial sulfur oxide 
data and industrial smoke and dust data of each city are 
from the China Urban Statistical Yearbook, while the 
carbon data is from the dual carbon map released by 
the Chinese Academy of Environmental Sciences and 
the Public Environment Research Center (IPE). There 
are five indicators in total (see Table 1), and each basic 
indicator is dimensionless. Then, we calculate the air 
pollution index by using the entropy method, and take 
the logarithm of it, recorded as lUAPI.

Core explanatory variable. The core explanatory 
variable is the interaction term between the regional 
dummy variable and the time dummy variable of the 
smart city pilot policy. 

Metrics Unit Direction

Per capita industrial waste water discharge tons/person +

Per capita industrial sulfur oxide emissions tons/person +

Per capita industrial smoke and dust emissions 10000 tons/person +

Per capita carbon emissions tons/person +

Annual average concentration of PM2.5 micrograms/cubic meter +

Table 1. Air pollution index system.
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Control variable. Urban ambient air quality is closely 
related to a variety of factors: the level of economic 
development, industrial structure, urban population 
size, the level of urbanization, and the level of foreign 
investment. We refer to the literature of Shi et al.(2018) 
[22], Li and Qi (2011) [27], Shi and Li (2020) [28], and 
Yao et al.(2023) [29], and we select the following five 
influencing factors as control variables: Per capita GDP 
(recorded as rgdp) represents the level of economic 
development. The proportion of secondary sector of 
the economy in GDP (recorded as str) represents the 
characteristics of the industrial structure. Population 
density (recorded as pd), which is expressed by the 
logarithm of the ratio of the permanent population of 
prefecture-level cities to the area of administrative 
regions, represents the differential impact of urban 
population size. The urbanization level (recorded as 
urb) is expressed by the ratio of the urban population 
to the permanent population of the prefecture-level city, 
which represents the level of urbanization. The level of 
foreign investment (recorded as fdi) represents the level 
of foreign investment utilization in cities. We take the 
logarithm of all control variables recorded as lrgdp, lfdi, 
lstr, lpd, and lurb. 

Mediating variable: The first mediating variable is 
technological innovation (recorded as pat). According 
to the classification of patents by the China National 
Intellectual Property Administration, patents are 
divided into invention, utility model and design, 
and the innovation of these three types of patents is 
reduced in turn. Utility model and design patents only 
require similar patent applications that have not been 
approved before, and the application requirements 
and examination standards are relatively relaxed. 
The application for invention patents must meet the 
requirements of “novelty, creativity and practicality” 
and have a high degree of novelty and technical 
creativity, so the number of thousands of invention 
patent applications are adopted, and the data are from 

the China National Intellectual Property Administration. 
The second mediating variable is marketization level 
(recorded as market). Using the method of Zeng and Wu 
(2020) [30], we construct a marketization level index 
from three dimensions: the relationship between the 
government and the market, the development of a non-
state-owned economy, and the degree of product market 
development.

Moderating variable: the first moderating variable is 
financial autonomy (recorded as fiscal): referring to Ran 
et al. (2021) [31], the calculation formula of financial 
autonomy: Financial autonomy is as follows: the ratio of 
per capita financial expenditure of prefecture-level city to 
the sum of per capita financial expenditure of prefecture-
level city, provincial per capita financial expenditure 
and national per capita financial expenditure. The 
second moderating variable is environmental protection 
regulation intensity of local governments(recorded as 
era). Referring to the construction method of indicators 
of environmental protection governance intensity of 
provincial governments by Chen and Chen (2018) [32], 
first, we searched 245 prefecture-level city government 
work reports from 2005 to 2020, and processed the text 
of government work reports by word segmentation; 
Then we counted the frequency of words related to 
environmental protection, and calculated the proportion 
of the total number of environmental protection words 
to the total number of words in the full text of local 
government reports every year. The third moderating 
variable is industrial structure upgrading (recorded as 
isui). Using Gan et al. (2011) [33], the index of industrial 
structure upgrading is the sum of the added value of the 
primary sector of the economy in proportion to GDP, 
the added value of the secondary sector of the economy 
twice in proportion to GDP, and the added value of the 
tertiary sector of the economy three times in proportion 
to GDP.

Table 2 shows the descriptive statistics of the main 
variables. As shown in Table 2, the annual mean value of 

Table 2. Descriptive statistics of variables.

Variable Obs Mean Std. Dev. Min Max

lUAPI 3920 1.339 0.515 -0.394 3.826

lrgdp 3920 10.022 0.773 6.497 12.255

lstr 3920 0.194 0.479 -1.677 2.361

lpd 3920 9.442 0.669 6.804 16.023

lurb 3920 3.842 0.347 2.037 4.605

lfdi 3808 -0.214 1.421 -7.795 2.656

pat 3920 0.395 0.821 0 11.822

market 3920 10.353 2.940 2.717 19.694

fiscal 3920 0.160 0.102 0.012 0.942

era 3806 0.316 0.148 0.016 1.239

isui 3913 2.249 0.140 1.163 2.760
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the logarithmic air pollution index is 1.339, the standard 
deviation is 0.515, the minimum value is -0.394, and 
the maximum value is 3.826. It shows that there are 
large differences in the air pollution index during the 
sample period of the study, indicating that there are 
large differences in the ambient air quality of each city, 
providing a starting point for the subsequent study of the 
impact of smart city pilot policies.

Results and Discussion

Benchmark Regression

To test the impact of smart city construction on 
urban ambient air quality, we establish the following 
multi-period double difference model:

0 1it it t i itY did Controlα α φ η µ ε= + + + + +  (1)

Where i,t represent prefecture level cities and 
years, respectively， Yit is the air pollution index 
of city i at time t, and the independent variable is   didit = treati × postt. Treat is a dummy variable for the 
treatment group and the control group, and if the city 

belongs to a smart city, the value of Treat is 1, otherwise 
it is 0. Post is a time dummy variable that is set to 1 in 
the year and later, when the smart city was approved as 
a pilot city, and otherwise is 0. The coefficient therefore 
shows the impact of smart cities on the air pollution 
index. A negative and significant α1 suggests that smart 
city construction exerts a positive effect on ambient air 
quality. Control is a set of control vectors, including 
income level, industrial structure, population density, 
urbanization rate, and openness to the outside world. μi 
and ηt are the unobservable fixed effects (FE) in cities 
and time, respectively, and ɛit is the random error term.

Table 3 shows the benchmark regression results of 
smart city construction on the air pollution index. Table 
3 (1) shows the regression of the smart city on the air 
pollution index without a series of control variables. 
The regression coefficient is -0.065, and it is significant 
at the 1% level. Table 3 (2) -3 (6) lists the regression of 
smart city construction on the air pollution index after 
adding a series of control variables, and the regression 
coefficient is still significantly negative, indicating that 
smart city construction significantly inhibits the increase 
in the environmental air pollution index. Taking Table 3 
(6) as an example, all control variables were included in 
the regression of Table 3 (6). The regression coefficient 
of smart city construction on the air pollution index is 

(1) (2) (3) (4) (5) (6)

lUAPI lUAPI lUAPI lUAPI lUAPI lUAPI

did -0.065*** -0.064*** -0.060*** -0.060*** -0.061*** -0.062***

(0.012) (0.012) (0.012) (0.012) (0.011) (0.011)

lrgdp 0.287*** 0.359*** 0.348*** 0.379*** 0.388***

(0.037) (0.039) (0.038) (0.034) (0.035)

lstr -0.117*** -0.117*** -0.099*** -0.069***

(0.019) (0.019) (0.018) (0.017)

lpd -0.023* -0.034*** -0.030***

(0.013) (0.012) (0.011)

lurb -0.697*** -0.715***

(0.036) (0.036)

lfdi -0.013***

(0.004)

_cons 1.352*** -1.529*** -2.226*** -1.896*** 0.564 0.487

(0.004) (0.369) (0.385) (0.420) (0.379) (0.384)

Year FE Y Y Y Y Y Y

City FE Y Y Y Y Y Y

N 3920 3920 3920 3920 3920 3808

R2 0.860 0.863 0.865 0.865 0.890 0.887

Note: The standard deviation is in square brackets, *p<0.1,**p<0.05, ***p<0.01. The following tables are the same.

Table 3. Benchmark regression of smart city policy to air pollution index.
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-0.062, which is significant at the 1% level, indicating 
that the construction of smart cities has significantly 
inhibited the improvement of the urban air pollution 
index. Among them, the construction of smart cities 
significantly reduced the ambient air pollution index by 
6.2%. Compared to non-smart cities, smart cities are 
easier to develop and use next-generation information 
technology to upgrade cities. On the one hand, 
enterprises in smart cities are more likely to intelligently 
upgrade their production and management equipment, 
and provide intelligent training for employees. All 
of these are conducive to improving the efficiency of 
resource utilization in production, including energy 
utilization efficiency, thereby reducing the emissions 
of industrial wastewater, exhaust gas, and smoke and 
dust. On the other hand, in smart cities, there are often 
supporting government special funds to support smart 
construction, which provides some support for air smart 
governance. The regression coefficient of economic 
growth (lrgdp) to the air pollution index is 0.388, 
which is significant at the level of 1%, indicating that 
China’s economic growth from 2005 to 2020 is still at 
the cost of sacrificing the ecological environment. The 
regression coefficient of the industrial structure (lstr) to 
the air pollution index is -0.069, which is significant at 
the 1% level, indicating that China’s secondary sector 
of the economy is gradually transitioning from a highly 
polluting and energy consuming industry to cleaner 
production. The regression coefficient of population 
density (lpd) to the air pollution index is -0.03, which 
is significant at the 1% level. It may be that high human 
capital concentration inhibits the aggravation of air 
pollution. The regression coefficient of the urbanization 
rate (lurb) to the air pollution index is -0.715, which is 
significant at the level of 1%, indicating that China’s new 
urbanization construction may help curb the increase 
in air pollution. The regression coefficient of opening 
to the outside world (lfdi) on the air pollution index is 
-0.013, which is significant at the 1% level, indicating 
that China’s opening to the outside world has produced 
a “pollution halo” effect, and this has had a positive 
impact on the ambient air.

Self-Reinforcing Effect Test

Furthermore, to test whether the improvement 
of the smart city construction level has shown an 
enhancing trend in improving urban ambient air quality, 
that is, whether there is a self-reinforcing effect, the 
following empirical analysis needs to be conducted. 
First, we divide 100 smart cities into three categories 
based on their level of smart construction, from low 
to high. Second, we use the classified smart cities as 
the processing group and 145 non pilot cities in the 
benchmark regression as the control group for regression 
analysis. According to the “6th (2016) Evaluation Report 
on the Development Level of China’s Smart Cities” 
jointly released by the information technology research 
center of the Chinese Academy of Social Sciences 
and the National Interconnection Smart City Research 
Center1. Ninety-six smart cities were matched, and the 4 
smart cities that were not matched were merged with 96 
other smart cities based on their per capita GDP level. 
Based on the comprehensive score of smart cities, 100 
smart cities are divided into three levels using the 25% 
and 75% percentiles as thresholds. Twenty-five smart 
cities below the 25th percentile belong to a relatively low 

1 The 6th (2016) China Smart City Development Level Assess-
ment Report jointly issued by the informatization research 
center of the Chinese academy of social sciences and the 
research center of the Guomai internet smart city ranks the 
comprehensive scores of the declared smart cities according 
to the principle of voluntary declaration, and subdivides the 
indicator infrastructure construction level, urban cloud plat-
form application, smart infrastructure, government online 
service level, public resource trading platform Social media 
participation, smart governance, social livelihood service 
level, data openness service level, smart livelihood, informa-
tion industry development level, economic output and energy 
consumption level, internet application level, smart economy, 
information service industry employees, network life level of 
mentors, information consumption level, smart population, 
planning and standard system, organizational management 
and performance evaluation, information security guarantee 
The scores of a total of 23 sub indicators such as the security 
system are added up to the rank.

Table 4. Benchmark regression of smart city policy to air pollution index.

(1)
level III

(2)
level II

(3)
level I

did -0.068***

(0.017)
-0.032**

(0.015)
-0.121***

(0.018)

Control Y Y Y

Year FE Y Y Y

City FE Y Y Y

N 2705 3006 2651

R2 0.886 0.878 0.888

Note: Y in the row where Control is located represents the addition of a series of control variables in the regression. The following 
tables are the same.
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level of smart construction and are recorded as level III. 
There are a total of 50 smart cities in the middle 25% 
-75% percentile, and their smart construction level is 
medium and recorded as level II. A total of 25 smart 
cities above the 75th percentile belong to a high level of 
smart construction, and are recorded as level I. Table 4 
(1) - (3) shows the regression results of the air pollution 
index of level III, level II and level I, respectively. The 
regression results show that, first, regardless of the level 
of smart city construction, smart city construction has 
significantly inhibited the increase in the air pollution 
index; Second, with the improvement of the construction 
level of smart cities, the inhibitory effect of smart city 
construction on the air pollution index from high to 
low is level I, level III and level II. A possible reason 
is that in the early stage of smart city construction, 
a new generation of information technology was 
integrated into the traditional infrastructure, and the 
initial application of intelligence significantly inhibited 
the improvement of air pollution. However, with  
the homogenization of smart city construction,  
marginal effects have decreased, leading to a decrease 
in their impact. With the accumulation of experience 
in smart city construction and the improvement of 
construction level, the application of smart scenarios 
becomes more mature, and the operational efficiency 
of urban systems becomes higher, further improving 
its inhibitory effect on ambient air pollution, further 
verifying Hypothesis 1.

Parallel Trend Test

The prerequisite for adopting the multi-period double 
difference model is that the experimental group and the 
control group maintain a consistent trend of change 
before the policy occurs, satisfying the parallel trend 
test hypothesis. Due to the different timing of policy 
impacts on pilot cities, it is necessary to set a relative 
time dummy variable for the implementation of smart 
city pilot policies for each pilot city. Drawing inspiration 

from Wang et al. (2023) [34], we construct Equation (2) 
for parallel trend testing, as follows:
 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

6 5 4 + 3
2 1 1

2 3 4 5
6 7 8

it it it it it

it it it it

it it it it

it it it t i it

Y Before Before Before Before
Before Before Current After
After After After After
After After After

β β β β β
β β β β
β β β β
β β β η µ ε

= + + +
+ + + +

+ + + +
+ + + + + + (2)

Among them, the time dummy variable are the 
observation values of each city established as a pilot city 
in the first 6 years, the current year, and the following 
8 years. The dummy variable for non-pilot cities is 0, 
as shown in Fig. 1 The results show that before the 
implementation of the smart city policy, the estimated 
coefficients of the interaction terms of the dummy 
variables in each period were not significant. However, 
after the implementation of the smart city policy, except 
for the 2015, the estimated coefficients of the interaction 
terms of the dummy variables in all other periods 
were significantly negative, and the absolute values of 
the estimated coefficients showed an increasing trend, 
indicating that the parallel trend assumption is valid. 
The smart city pilot policy conforms to the parallel 
trend assumption.

Robustness Test

To strengthen the empirical results of the 
improvement effect of smart city construction on 
ambient air quality, this section conducts a series of 
robustness tests on issues that may affect the benchmark 
regression results.

Placebo Test. To further test whether the results of 
the benchmark regression are driven by unobservable 
factors, a placebo test was adopted. Due to the time 
difference in policy shocks in multi period pilot cities, 
it is necessary to simultaneously generate both pseudo 
processing group dummy variables and pseudo policy 
shock variables. Based on this, we adopt the following 
placebo test: first, 100 cities are randomly selected from 

Fig. 1. Parallel trend test of air pollution index.



Achieving Clean Air through Smart Cities... 2299

245 cities as smart pilot cities, and the other 145 cities 
are non-pilot cities. Five hundred random samples are 
selected for 500 benchmark regressions. The kernel 
density and p-values of the estimated coefficients for 
500 randomly generated are presented in Fig. 2. Fig. 2 
shows that the estimation coefficients of 500 randomly 
generated are mostly concentrated at approximately 
0, and the p-values are mostly greater than 0.1. This 
confirms to some extent the robustness of the benchmark 
regression conclusion.

Reverse causal problem. Based on the benchmark 
regression results, smart cities significantly suppressed 
the increase in air pollution, and the degree of air 
pollution may not have a direct impact on smart 
cities. This is because the Chinese government has 
requirements for the application of national smart city 
pilot cities, which require procedures such as local 
city application, preliminary review by provincial 
housing and urban-rural construction authorities, and 
comprehensive evaluation by experts. Specifically, the 
application for a city needs to meet four conditions: 
First, the construction of a smart city has been included 
in the local national economic and social development 
“12th Five Year Plan” or relevant special plans; 
Second, the preparation of the smart city development 
planning outline has been completed; Third, there 

are clear funding plans and guarantee channels for 
the construction of smart cities; Last, the main person 
in charge of the responsible entity is responsible for 
creating pilot applications and organizing management. 
From the declaration conditions, it can be seen that it 
does not directly involve environmental air issues.

Sample selection problem. Due to the fact that 
whether to become a smart pilot city is not a random 
sampling, but rather an active declaration by prefecture 
level cities, there is a problem of sample selection. The 
Propensity Matching Test (PSM-DID) method is used to 
address this problem.

Propensity Matching Test (recorded as PSM-DID). 
Whether to become a smart pilot city or not is not 
random sampling. It is voluntarily declared by each 
prefecture-level city. There may be a sample selection 
problem. For this problem, the PSM-DID method is 
adopted [22]. When using the PSM-DID method, the 
propensity score value is obtained by logistic regression 
of the control variable based on whether it is a dummy 
variable of a smart city. The city with the closest 
propensity score is the paired city of smart cities, and 
this method can minimize the systematic differences 
in environmental air pollution levels among different 
cities. Before conducting PSM-DID estimation, we also 
need to conduct model validity testing. The first thing to 
test is whether there is a significant difference between 
the experimental group and the control group for 
each variable after matching. If there is no significant 
difference, it indicates that the PSM-DID method  
can be used. Table 5 shows the effectiveness test  
of PSM-DID. From the value of P in Table 5, it can be 
seen that the original hypothesis cannot be rejected 
(the original hypothesis is that there is no significant 
difference between the mean of the matched post-
processing group and the mean of the control group).  
It can be considered that there is no significant difference 
between the mean of the matched post-processing group 
and the mean of the control group. The regression 
results after propensity score matching are shown in 
Table 6 (1), indicating that the policy effect of smart city 
pilots still has a significant improvement effect on urban 
ambient air quality.

In the specific estimation, we use the kernel 
matching method to test whether the role of smart city 
construction in reducing environmental air pollution 
is robust. Before estimation, we tested the matching 
effect between the experimental group and the control 

Fig. 2. Placebo test of air pollution index.
Note: The X-axis represents the estimated coefficients generated 
randomly 500 times, while the Y-axis represents the p-value of 
the estimated coefficients.

Mean Treated Mean Control %Bias P>|t|

lrgdp 10.553 10.521 4.2 0.378

lstr 0.099 0.107 -1.9 0.723

lpd 9.210 9.329 -1.4 0.786

lurb 4.015 4.017 -0.8 0.847

lfdi -0.222 -0.233 0.7 0.894

Table 5. Validity test after propensity score matching.
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group by drawing a kernel density function graph of 
propensity score values, as shown in Fig. 3. Fig. 3 shows 
that the probability density of propensity score values 
between the treatment group and the control group is 
already relatively close after matching, indicating that 
the matching effect of this paper is very good. Therefore, 
the PSM-DID method in this paper is feasible.

Sample Data Screening and Exclusion of Other 
Policy Interferences. To prevent the sample outlier from 
having a great impact on the benchmark regression,  
the sample was processed by shrinking the tail by 1% 
and cutting the tail by 1%. The regression results are 
shown in Tables 6 (2) and 6 (3), which are basically 
consistent with the benchmark regression result in 
Table 6 (1). During the implementation of the smart 
city policy, there were also policies related to the smart 
city policy and the ecological environment, including 
the national pilot policy for new urbanization and 
the national pilot policy for low carbon cities. In the 
benchmark regression, dummy variables of the national 
pilot policy for new urbanization (recorded as didrb) and 
the national pilot policy for low carbon cities (recorded 
as didco2) were added. The regression results are shown 
in Table 6 (4), indicating that after adding two relevant 
pilot policies, the smart city policy still significantly 
suppresses the increase in the air pollution index.

System Generalized Method of Moments Testing. 
Considering the inertia of variables, variables that may 
lag one period have an impact on the current period (Li 
and Qi, 2011) [27]. This may lead to severe endogeneity. 
Therefore, the system generalized method of moments 
(GMM) is used to estimate the panel model to test the 
robustness of endogeneity problems. The regression 
results are shown in Table 6 (5), and they are robust.

Testing for Intermediation Effects

The above benchmark regression and a series of 
robustness tests indicate that the construction of smart 

cities has a significant improvement effect on urban 
ambient air quality. According to Hypothesis 2, smart 
city construction has an impact on ambient air quality 
by enhancing the level of urban technological innovation 
and marketization.

Whether smart cities have an impact on ambient air 
quality by enhancing the level of urban innovation and 
marketization level requires further empirical testing 
with the intermediation effect model. The intermediation 
effect model is set as follows:

0 1 2it it it i t itY did Controlα α α µ η ε= + + + + +    (3)

0 1 2it it it i t itMediator did Controlβ β β µ η ε= + + + + +    (4)

0 1 2 3+it it it it i t itY Mediator did Controlγ γ γ γ µ η ε= + + + + +    (5)

Mediator is an intermediary variable that includes 
the level of urban technological innovation and 
marketization level. If the construction of smart 
cities affects urban ambient air quality, the estimated 
parameters α1 β1 γ1 γ2 in Formulas (3) to (6) are 
statistically significant.

Testing of Technological Innovation Mechanism. 
Technological innovation is represented by the number 
of invention patent applications per thousand people, 
recorded as pat. Table 7 (2) shows the regression results 
of smart city construction on technological innovation. 
The regression coefficient of smart city construction on 
the number of invention patent applications per thousand 
people in Table 7 (2) is 0.232, and it is significant at the 
1% level, indicating that smart city construction has 
significantly increased the number of invention patent 
applications per thousand people. Table 7 (3) shows the 
regression results after adding technological innovation 
variables to the benchmark regression. In Table 7 (3), 
the regression coefficient of smart city construction to 
the air pollution index is -0.061, which is significant 

(1) (2) (3) (4) (5)

PSM-DID Shrinkage tail 1% Truncation 1% Other policies GMM test

did -0.061*** -0.060*** -0.055*** -0.062*** -0.083**

(0.011) (0.010) (0.010) (0.011) (0.036)

didurb 0.004

(0.012)

didco2 -0.005

(0.014)

Year FE Y Y Y Y Y

City FE Y Y Y Y Y

N 3603 3808 3477 3808 3571

R2 0.892 0.898 0.908 0.887 -

Table 6. Robustness test regression results.
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at the level of 1%. The regression coefficient of pat 
applications to the air pollution index is -0.004, but it 
is not statistically significant. This indicates that the 
construction of smart cities may affect air quality 
through technological innovation paths. Furthermore, 
to test whether smart city construction improves the 
ambient air quality through the technological innovation 
path, a bootstrap intermediary test was conducted, as 
shown in Table 7. The test results show that both indirect 
and direct effects are significant at the 1% level, and 
the confidence interval does not contain 0, indicating 
that a path does exist, that is, smart city construction 
affects the air pollution index through the technological 
innovation path.

Testing of Marketization Level Mechanism. Using 
the method of Zeng and Wu (2020) [30], we build 
prefecture-level city marketization index (recorded as 
market). To test whether the construction of smart cities 

improves air quality through market-oriented paths. 
The regression results are shown in Tables 7 (4) - (5). 
Table 7 (4) shows that the regression coefficient of smart 
city construction on the marketization index is 0.019, 
and it is significant at the 1% level. This indicates that 
the construction of smart cities has accelerated the 
improvement of the marketization level. Compared to 
non-pilot cities, smart cities can increase the number 
of patent applications per thousand by 23.2%. The 
construction of smart cities helps to enhance urban 
innovation. However, it is difficult to translate relevant 
patent achievements into actual production services, 
resulting in an insignificant improvement effect of 
urban innovation on environmental air quality. Table 
7 (5) regression results show that the regression  
coefficient of smart city construction to air pollution 
index is -0.061, and hence it is significant at the 1% level. 
The regression coefficient of the marketization index  

Fig. 3. Probability distribution density function diagram of propensity score values. a) Before matching, b) After matching.
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to the air pollution index is -0.069, but it is not 
statistically significant. To test whether the construction 
of smart cities has improved ambient air quality through 
the market-oriented path, a bootstrap intermediary test 
is further conducted, as shown in Table 7. The test results 
show that both indirect and direct effects are significant 
at the 1% level, and the corresponding confidence 
intervals do not contain 0, indicating the existence of 
this path. That is, the construction of smart cities can 
improve urban ambient air quality by enhancing the 
level of marketization. Compared to non-pilot cities, 
smart cities have increased their level of marketization 
by 1.9%. The improvement of marketization level can 
promote a 6.9% reduction in ambient air pollution in 
smart cities. Compared to the urban innovation path, 
smart cities can better improve ambient air quality 
through market-oriented horizontal paths. This is 
related to the characteristics of urban innovation and 
market-oriented horizontal. Urban innovation has the 
characteristics of long cycles, high risks, and high 
economic costs. However, the level of marketization is 
mainly related to the relevant policies introduced by the 
central and local governments, and policies related to 
marketization are more likely to have short-term effects.

Heterogeneity Analysis

Analysis of the Heterogeneity of Urban Population 
Size. Due to the different sizes of urban populations, 
concentrated production factors, and environmental 

pollution issues, the impact of smart city construction 
on its ambient air quality will also vary. To test the 
existence of this heterogeneity, we drew inspiration 
from the “Notice on Adjusting the Standards for Urban 
Scale Classification” issued by the State Council in 
2014 to classify cities into four categories: small cities, 
medium-sized cities, large cities, and megacities and 
conducted regression analysis separately. Because 
the sample cities in this paper are prefecture level 
or above, and the data in small cities are very small, 
the sample data for small cities are deleted. The 
regression results are shown in Tables 8 (1) - (3). Table 8 
(1) - (3) shows that the construction of smart cities 
inhibits the urban air pollution index. The largest and 
most significant negative impact is in medium-sized 
cities, followed by large cities, while the impact is 
not statistically significant in those with a population 
size of over 5 million. This is perhaps because when 
the size of a city is small, the construction of smart 
cities mre easily transforms the existing infrastructure  
and penetrates new types of infrastructure, and its 
positive environmental effects are more apparent.  
The ambient air challenges faced by large cities 
are more complex and diverse, and due to the 
homogenization phenomenon of smart city construction, 
the improvement of ambient air quality by smart city 
construction is actually lower than that of medium-
sized cities. Especially in cities with extremely large 
populations, where the industrial structure is basically 
high-end and service-oriented, the urban ecological 
environment is relatively better, and cities place more 

(1) (2) (3) (4) (5)

lUAPI pat lUAPI market lUAPI

did
-0.062*** 0.232*** -0.061*** 0.019*** -0.061***

(0.011) (0.036) (0.011) (0.004) (0.011)

pat
-0.004

(0.003)

market
-0.069

(0.056)

Year FE Y Y Y Y Y

City FE Y Y Y Y Y

N 3808 3808 3808 3808 3808

R2 0.887 0.600 0.887 0.956 0.887

Bootstrap intermediary test coef Std Err Z P>|Z| 95% Conf. Interval

Technological
Innovation

Indirect effects -0.012 0.003 -4.45 0.000 [-0.017, -0.007]

Direct effects -0.118 0.019 -6.19 0.000 [-0.156, -0.081]

Marketization level
Indirect effects -0.062 0.006 -11.07 0.000 [-0.073, -0.051]

Direct effects -0.068 0.018 -3.72 0.000 [-0.104, -0.032]

Table 7. Testing for intermediation effects.
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emphasis on livability to attract talent gathering, the 
difference in environmental effects caused by the 
construction of smart cities is relatively small.

Analysis of Urban Location Heterogeneity.  
The impact of smart city construction on ambient air 
quality may vary depending on the region in which the 
city is located, and this is perhaps due to the different 
levels of economic development and natural endowments 
in different regions where the city is located. To test the 
existence of this difference, we grouped the sample cities 
by eastern, central, and western regions. The regression 
results are shown in Tables 8 (4) - (6). The inhibitory 
effect of smart city construction on the air pollution 
index varies in different regions, from the largest to 
the smallest in the middle, west and east. The eastern 
region is the lowest, which may be because the economy  
of the eastern region is dominated by the tertiary sector 
of the economy, especially the high-tech industry,  
and the air environment quality is better than that  
of the central and western regions. The difference in 
the impact of smart city construction on the ambient 
air quality is relatively small. The economy of the 

central and western regions is mainly secondary sector 
of the economy, mainly consuming natural resources, 
especially low-end and high energy consuming 
industries. The air pollution is relatively serious.  
The impact of smart city construction on ambient air 
quality is quite different.

Testing for Moderating Effects

The previous analysis showed that the construction 
of smart cities can significantly improve the air quality 
of urban environments. Due to the differentiated social 
characteristics of each city, there are differences in the 
policy effectiveness of smart cities. We discuss whether 
there is a moderating effect on the differentiation level 
of fiscal autonomy, local government environmental 
regulation intensity, and industrial structure upgrading.

Analysis of the Moderating Effect of Fiscal 
Autonomy. Previous studies have found that the deeper 
the degree of fiscal autonomy, the more favour it is for 
local governments to flexibly extract financial funds 
for environmental protection (Ben and Li ( 2017) [35]. 

Table 8. Heterogeneity analysis.

(1) (2) (3) (4) (5) (6)

Medium-sized cities Big cities Mega cities Easternregions Central regions Western regions

did -0.125*** -0.046*** -0.025 -0.042*** -0.063*** -0.057**

(0.037) (0.011) (0.040) (0.015) (0.016) (0.028)

Year FE Y Y Y Y Y Y

City FE Y Y Y Y Y Y

N 794 2666 130 1437 1522 847

R2 0.861 0.879 0.978 0.921 0.873 0.879

(1) (2) (3)

Fiscal autonomy  Environmental regulations Industrial structure upgrading

did -0.056*** -0.069*** -0.054***

(0.011) (0.011) (0.012)

did* fiscal -0.204***

(0.057)

did*era 0.130***

(0.048)

did* isui -0.115*

(0.062)

Year FE Y Y Y

City FE Y Y Y

N 3808 3703 3803

R2 0.887 0.886 0.887

Table 9. Testing for moderating effect.
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Specifically, in the construction of smart cities, the 
deeper the degree of financial autonomy, the more 
conducive it is for local governments to flexibly allocate 
financial funds for smart special projects, and to 
improve ambient air quality. Using Ran et al. (2021) [31], 
we construct a fiscal autonomy regulatory effect index, 
recorded as fiscal. Using the interaction term of the 
dummy variable of the smart city pilot policy to multiply 
by the fiscal autonomy index, we explore whether fiscal 
autonomy has a moderating effect, and the regression 
results are shown in Table 9 (1). Table 9 (1) shows that 
the regression coefficient of the interaction between 
smart city policy and fiscal autonomy index is -0.204, 
and it is significant at the 1% level. That is, with the 
increase in urban financial autonomy, the improvement 
effect of smart city construction on urban ambient air 
quality shows an increasing trend. Due to the large 
amount of special funds required for the construction of 
smart cities, and based on the characteristics of Chinese 
society, the construction funds for smart cities mainly 
come from local governments. However, due to the fiscal 
decentralization policy, the funds that local governments 
can mobilize are limited. As fiscal autonomy increases, 
local governments have more funds to invest in the 
construction of smart cities, which helps to implement 
smart scenarios.

Analysis of the Moderating Effect of Local 
Government Environmental Regulations. Cities 
with stronger local environmental regulations are 
usually areas with more severe pollution. Under the 
requirements of the central government’s environmental 
laws and regulations, environmental regulations in these 
areas may become stronger, and smart city construction 
projects may tilt towards environmental supervision. 
Refined environmental regulation will increase the 
cost of pollution control for enterprises, stimulating 
them to turn their profitable high pollution production 
into hidden production, and thereby increasing the 
scale of the hidden economy (Yu and Gao, 2015) [36]. 
The hidden economy of high pollution leads to the 
further expansion of industrial waste emissions, thus 
affecting ambient air quality. Therefore, strong local 
environmental regulations may have a negative impact 
on the ambient air quality effect of smart cities. To 
test whether there is such a reverse adjustment effect, 
using Chen and Chen (2018) [32], we measured the 
intensity indicators of local government environmental 
regulations, recorded as era. The regression results 
are shown in Table 9 (2). Table 9 (2) shows that the 
regression coefficient of the intersection of smart city 
policies and local government environmental regulation 
intensity index is 0.130, and this is significant at the 1% 
level. That is, with the deepening of local government 
environmental regulations, the construction of smart 
cities has actually weakened the improvement of urban 
ambient air quality. When environmental regulations 
are too strict, it is possible to force enterprises to 
reduce production scale or conceal pollution emissions, 
ultimately leading to increased environmental pollution.

Analysis of the Moderating Effect of Industrial 
Structure Upgrading. Because the urban economy 
has the typical characteristics of secondary sector of 
the economy and the tertiary sector of the economy 
agglomeration, the traditional secondary sector of 
the economy has the tendency of resource based 
industries with high energy consumption and high 
pollution, leading to an increase in the emissions of 
industrial wastewater, exhaust gas, smoke and dust, and 
greater pressure on the urban ecological environment 
air quality, thus leading to the impact of smart city 
construction on the environmental air quality, and 
this will vary according to different urban industrial 
structures. To test the existence of this regulatory effect, 
drawing inspiration from Gan (2011) [33], we construct 
indicators for industrial structure upgrading (recorded 
as isui) . The regression results are shown in Table 9 
(3). The regression coefficient of the interaction between 
smart city policies and industrial structure upgrading 
is -0.115, and this is significant at the 10% level. This 
shows that with the upgrading of industrial structure, 
the inhibitory effect of smart city construction on the air 
pollution index is increasing. The process of upgrading 
the industrial structure of smart cities is the process 
of industrial intelligent transformation. The intelligent 
transformation of industries can help improve the 
efficiency of industrial resource utilization, especially 
in high energy consuming industries, which can help 
reduce pollution emissions.

Conclusions

Research Findings and Recommendations

This paper mainly studies the impact of smart city 
construction on ambient air quality. Based on China’s 
urban panel data from 2005 to 2020, taking the national 
smart city pilot as a quasi-natural experiment, the 
air pollution index is constructed by using per capita 
industrial wastewater emissions, per capita industrial 
SO2 emissions, per capita industrial soot emissions, 
per capita CO2 emissions, and the average annual 
concentration of PM2.5 to measure urban ambient 
air quality. Using the multi- period double difference 
method, we study the impact of smart city construction 
on urban ambient air quality. The research conclusions 
are as follows: First, smart city construction significantly 
reduces the air pollution index and improves the 
urban ambient air quality, and this effect has a self-
reinforcing trend with the improvement of smart 
city construction level. Second, further transmission 
mechanism testing shows that the construction of smart 
cities improves urban ambient air quality by enhancing 
urban technological innovation and marketization 
levels. Third, heterogeneity analysis shows that the 
construction of smart cities has a higher improvement 
effect on the ambient air in medium-sized cities than 
in large cities, and a greater improvement effect on the 
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ambient air in the central and western regions than in the 
eastern regions. Finally , analysis of moderating effect 
shows that with the deepening of fiscal decentralization 
and upgrading of industrial structure, the effect of smart 
city construction on improving ambient air quality is 
showing an increasing trend. However, the increased 
intensity of environmental regulations by local 
governments has actually suppressed the improvement 
effect of smart city construction on ambient air quality.

In view of this, the following suggestions are 
proposed:

First, the government needs to optimize top-level 
design and delegate more financial autonomy. Due to the 
complexity of the urban ambient air system, involving 
both internal and external factors, it is necessary to 
strengthen the top-level design of smart city construction 
to improve the quality of ambient air through smart 
city construction. Supported by a large amount of data 
and based on the interconnection of national data, the 
smart ecological environment should be integrated 
with e-government, smart transportation, and smart 
health care. The integration of smart education and 
other aspects makes people’s travel more convenient, 
living more comfortable, and the environment better. 
On the other hand, the construction of smart cities 
requires a large amount of financial support. China’s 
smart city construction is led by local governments. 
Only by delegating more financial autonomy can local 
governments more flexibly allocate funds to tilt towards 
smart city construction, accelerate the construction of 
smart cities, and then promote air quality improvement.

Second, local governments need to consolidate 
technological progress and improve the level of 
marketization. The construction of smart cities is not 
only an important source and is carrier driven by urban 
technological innovation, but is also an important carrier 
for exploring the high-tech industry market. Therefore, 
in the process of promoting smart city construction, local 
governments should consolidate technological progress, 
increase support for new generation information 
technology innovation and technology biased guidance, 
and accelerate the integration of the Internet of Things, 
cloud platforms, and artificial intelligence. On the other 
hand, a market-oriented approach should be established, 
gradually introducing a government enterprise co-
construction model, and allocating a reasonable 
proportion of co- construction to ensure the decision-
making power of enterprises, encourage them to 
actively participate in the construction of smart cities, 
and improve the level of marketization.

Third, local governments should pay attention 
to implementing policies tailored to the city and 
strengthen the upgrading of industrial structure. Due 
to the different effects of smart city construction on 
the ambient air quality of different cities, the specific 
overall plan for smart city construction should not be 
copied from other cities to reduce costs. The overall 
plan must be formulated based on the city’s own 
environmental air conditions and social population 

economic conditions, and implemented according to 
the city’s policies. At the same time, it must be noted 
that although the construction of smart cities can enable 
cities to enhance their monitoring and decision-making 
capabilities for environmental air pollution sources 
through technological means, thereby improving air 
quality, the true determination of a city’s air quality 
foundation is its natural ecology, industrial structure, 
and other economic and social conditions. Therefore, in 
the process of building a smart city, we must actively 
promote industrial digital transformation and structural 
upgrading, constantly promote the natural, social and 
ecological virtuous circle of the city, and create a livable 
urban environment. 

The theoretical contributions of this paper are listed 
below. First, in order to comprehensively consider the 
factors that cause air pollution, we use entropy method 
to build air pollution index, providing new measurement 
methods for studying air pollution. Second, we analyse 
the self-strengthening effect of smart city construction 
on ambient air quality. That is, we categorizes smart 
cities according to their scores and examines the 
impact of smart cities on ambient air quality at different 
construction levels. Third, we analyse the impact 
path of smart city construction on ambient air quality 
from a market-oriented perspective, providing some 
reference for the market-oriented reform direction of the 
government; Then, we discuss the moderating effects 
of different social endowments (fiscal autonomy, local 
government environmental regulation intensity, and 
industrial structure upgrading) on the ambient air quality 
effects of smart city construction, to provide suggestions 
for overcoming the obstacles in the construction of 
smart cities.
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